

# Extreme Environments Focus Group March Telecon

March 9, 2021

Dr. Benjamin Greenhagen Planetary Spectroscopy Section Supervisor Johns Hopkins Applied Physics Laboratory

Facilitator\_ExtremeEnvironments@jhuapl.edu





# Today's Agenda

- LSIC & FG Updates (15 min Greenhagen, Stockstill-Cahill, Somervill)
- LSIC-EE Winter/Spring Meeting Cycle (30 min Greenhagen)
  - Schedule / Plan
  - List of Lunar Specific Surface Environments
- Open floor (time permitting)

Next month: April Meeting is scheduled for Tuesday 4/13/21 at 2:30pm EST (2-hour length)



### LSIC Updates

#### LSIC Spring Meeting scheduled for May!

- May 11-12 (Tuesday-Wednesday)
- Virtual Meeting
- Day 1: Focus on Community Updates
- Day 2: Focus on Contributed Presentations / Posters

#### LSIC Workshops

- Dust Mitigation Workshop (2/4/21)
- Extreme Access Precision Landing Workshop (3/2-3/4/21)
- Commercial Lunar Payload Services Workshop (Summer 2021)
- TBD Joint Focus Group Workshops (starting Summer 2021)



# LSIC Updates

#### LSIC Focus Group Meeting Schedule

| Subgroup                     | Meeting Times (ET) | Lead              | Email                                         |
|------------------------------|--------------------|-------------------|-----------------------------------------------|
| In Situ Resource Utilization | 3rd Wed @ 3 pm     | Karl Hibbitts     | Facilitator_ISRU@jhuapl.edu                   |
| Surface Power                | 4th Thu @ 11 am    | Wes Fuhrman       | Facilitator_Power@jhuapl.edu                  |
| Extreme Environments         | 2nd Tue @ 3:05 pm  | Ben Greenhagen    | Facilitator_ExtremeEnvironments@jhuapl.edu    |
| Extreme Access               | 2nd Thu @ 3 pm     | Angela Stickle    | Facilitator_ExtremeAccess@jhuapl.edu          |
| Excavation and Construction  | Last Fri @ 3 pm    | Athonu Chatterjee | Facilitator_ExcavationConstruction@jhuapl.edu |
| Dust Mitigation              | 3rd Thu @ 12 pm    | Jorge Núñez       | Facilitator_DustMitigation@jhuapl.edu         |

Many Focus Groups are starting to form subgroups!



### LuSTR Update

NASA selected six project proposals under its first-ever Lunar Surface Technology Research (LuSTR) solicitation

"Through LuSTR, NASA selected three university-led proposals to research innovative ways to identify resources, like water, on the Moon, and inventive designs for extraction and utilization equipment.

- The University of Texas in El Paso one of the largest Hispanic-serving institutions in the country will
  research an advanced thermal mining approach that could release, trap, and transport water vapor found on
  the Moon. The team, led by principal investigator Ahsan Choudhuri, plans to experimentally demonstrate over
  two pounds (about one kilogram) of collection capacity within 11 hours.
- Washington University in St. Louis will build a rover-mounted drill to quantify the 3D distribution of water at the Moon's South Pole. A laser instrument located at the bottom of the drill, capable of analyzing regolith, would quantify the amount of water and other chemicals present beneath the surface. Principal investigator Alian Wang will lead the research team and reconnaissance instrument development.
- Michigan Technological University in Houghton will adapt a heated percussive cone penetrometer an
  engineering instrument regularly used on Earth to characterize the strength of lunar soil, or regolith.
  Understanding a lunar region's regolith strength could inform methods of excavating water and building
  structures using local materials. Paul van Susante will serve as the project's principal investigator."



### **LuSTR Update**

"Complementing this research, three other university teams will mature next-generation energy storage and power distribution technologies. The projects could help power in-situ resource utilization operations and other robust infrastructure on the Moon.

- The University of California in Santa Barbara, led by principal investigator Philip Lubin, will research wireless
  power transfer feasibility from a base station to multiple distant assets on the Moon. Small rovers, for example,
  could be equipped with low-power beacons capable of receiving around 100 Watts of power in regions where
  solar or tethered power transfer is impractical, such as in the Moon's deep and dark craters.
- Vanderbilt University in Nashville will look into using silicon carbide power components for lunar surface
  applications. At present, these power components are particularly susceptible to radiation and frequently fail or
  experience reduced performance in space. Principal investigator Arthur Witulski will lead the project.
- The Ohio State University in Columbus will explore flexible energy distribution between multiple, different power grids that may use solar, radioisotope, and battery sources that could be deployed on the lunar surface to support the Artemis program. The project, led by Jin Wang, will focus on control methodologies and perform both hardware and software demonstrations.

Via the LuSTR selections, NASA aims to stimulate lunar technology development within academia and help fast-track the readiness of critical lunar technologies and components. The NASA funding for each project varies. The maximum grant amount is \$2 million per selection, over two years."



# **Focus Group Updates**

#### Who's Who in LSIC-EE!

Table of information describing LSIC-EE members and/or member institutions

| Who Are<br>You?<br>(Individual<br>or<br>Institution) | What Do You Do?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | What Do You Want Others to Know About<br>You?                                                                                                                                                                                        | Other Comments                                                                                 | Website, Contact Info, POC, etc.                                                                                                            |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Example:<br>MoonCheese,<br>Inc.                      | Example: Prospect for and mine Münster, Gouda,<br>and other soft cheeses from mid-latitude<br>Procellarum-KREEP terrain                                                                                                                                                                                                                                                                                                                                                                                                         | Example: Happy to license Cheese Detection and Ranging (CheDAR) technology to NASA and commercial partners                                                                                                                           | Example: Working<br>with STMD; looking<br>to engage with SMD<br>and Wisconsin dairy<br>farmers | Example: MoonCheese.space; info@MoonCheese.space                                                                                            |
| Ben<br>Greenhagen,<br>LSIC-EE FG<br>Facilitator      | As the LSIC-EE Facilitator, I help to form a collaborative alliance of NASA, industry, academia, non-profits and government in areas relevant to Extreme Environments.  My research interests focus on thermal emission spectroscopy from airless bodies. I love flight missions and am the Deputy PI of the LRO Diviner Lunar Radiometer, a Co-I of Lunar Flashlight, a Co-I of L-CIRIS, and a Co-I of the BepiColombo MERTIS.  I also run a laboratory spectroscopy facility, the Simulated Airless Body Emission Laboratory. | I'm here to help build this community. Our goal is to build bridges not just between between you and NASA but also between community members. If you are looking for opportunities to be more active in this community, let me know! | Beautiful, beautiful.<br>Magnificent<br>desolation.                                            | http://lsic.jhuapl.edu/Focus-Areas/Extreme-<br>Environments.php  Facilitator_ExtremeEnvironments@jhuapl.edu  benjamin.greenhagen@jhuapl.edu |

https://lsic-wiki.jhuapl.edu/display/EE/Who%27s+Who+in+LSIC-EE



### Focus Group Updates

Subgroups are currently supporting both the LSIC-EE Winter/Spring Cycle activities and community resources / guidance documents

- Lunar Radiation Environment Guidance
  - https://lsic-wiki.jhuapl.edu/display/EE/Lunar+Radiation+Environment+Guidance
- Regolith/Surface Interface Resource Guide
  - <a href="https://lsic-wiki.jhuapl.edu/pages/viewpage.action?pageId=6260391">https://lsic-wiki.jhuapl.edu/pages/viewpage.action?pageId=6260391</a>
- Space Weather / Plasma Environment Guidance
  - https://lsic-wiki.jhuapl.edu/pages/viewpage.action?pageId=6260116
- Thermal and Illumination Environment Literature Review Summary Report & Library
  - <a href="https://lsic-wiki.jhuapl.edu/pages/viewpage.action?pageId=4031599">https://lsic-wiki.jhuapl.edu/pages/viewpage.action?pageId=4031599</a>
- Vacuum Testing Chamber Guidance
  - <a href="https://lsic-wiki.jhuapl.edu/display/EE/Vacuum+Testing+Chamber+Guidance">https://lsic-wiki.jhuapl.edu/display/EE/Vacuum+Testing+Chamber+Guidance</a>

Karen's Corner – Monthly Confluence Highlight

Kevin's Corner – NASA News and Notes



#### Each Focus Group is tasked with compiling community inputs on relevant topics

- Some FGs have conducted ~6-hour topic-specific workshops (e.g. ISRU Supply and Demand, Dust Mitigation) but there are other possible approaches
- Desirable to leverage unique structure of LSIC-EE and broad-based expertise
- Piloting a multi-month approach including a "supersized" monthly tag-up
- First topic: Identifying and Classifying Specific Lunar Surface Environments
  - "Breaking Down the Lunar Environment Monolith"
  - How do different environments stress technologies in different ways
  - How do specific lunar environment differ from descriptions of the general lunar environment?
    - NASA Cross-Program Design Specification for Natural Environments (DSNE) Revision H
    - https://ntrs.nasa.gov/citations/20205007447



#### Activities to Complete Before the LSIC Spring Meeting

- January Subgroups + February (2/9) & March (3/9) Focus Group Meetings
  - Gather community inputs regarding interesting lunar environments / categorize types of sites
- February & March Subgroup Meetings
  - Subgroups summarize environments for each type of site
  - What do we know? What do we think? What do we not know?
- April Supersized Focus Group Meeting (4/13)
  - Discuss preliminary evaluations with focus group; seek feedback; identify missing information; identify needs
- April Subgroup Meetings
  - Revisit site types for additional characterization (as needed)
  - Rank site types by level of environmental stresses (hardest environments ranked higher / easier environments ranked lower)
- LSIC Spring Meeting is May 11-12, 2021
  - Preliminary report to LSIC community



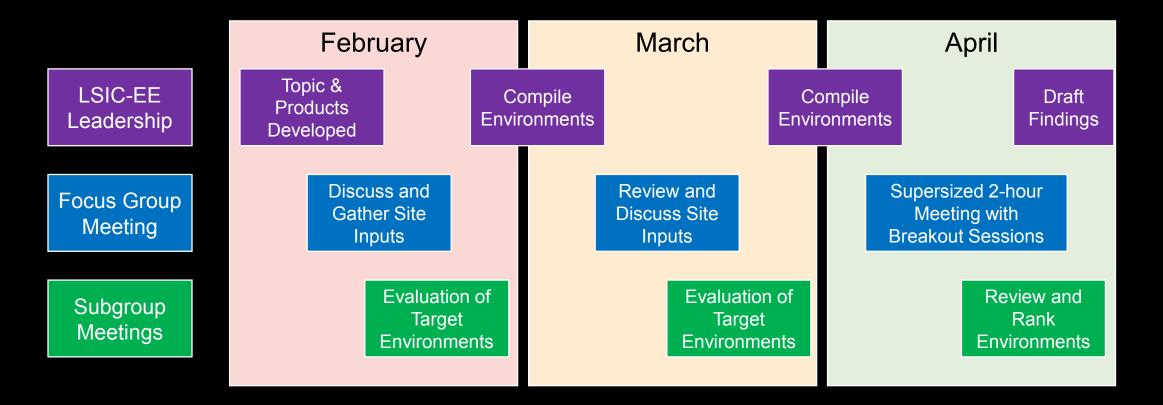


#### Subgroup Meeting Schedule

• All subgroup monthly tag-ups are scheduled for the 3<sup>rd</sup> or 4<sup>th</sup> week of the month

| Subgroup                           | Meeting Times (ET) | Lead               | Email                         |
|------------------------------------|--------------------|--------------------|-------------------------------|
| Radiation Environment              | 4th Wed @ 2 pm     | Lawrence Heilbronn | lheilbro@utk.edu              |
| Regolith / Surface Interface       | 4th Tue @ 11 am    | Melissa Roth       | melissa@offplanetresearch.com |
| Space Weather / Plasma Environment | 4th Mon @ 2 pm     | Justin Likar       | justin.likar@jhuapl.edu       |
| Thermal & Illumination Environment | 3rd Tue @ 5 pm     | Ahsan Choudhuri    | ahsan@utep.edu                |
| Vacuum / Exosphere Environment     | 4th Thu @ 12 pm    | Stephen Indyk      | sjindyk@honeybeerobotics.com  |




#### Activities to Complete Before the LSIC Spring Meeting

- January Subgroups + February (2/9) & March (3/9) Focus Group Meetings
  - Gather community inputs regarding interesting lunar environments / categorize types of sites
- February & March Subgroup Meetings
  - Subgroups summarize environments for each type of site
  - What do we know? What do we think? What do we not know?
- April Supersized Focus Group Meeting (4/13)
  - Discuss preliminary evaluations with focus group; seek feedback; identify missing information; identify needs
- April Subgroup Meetings
  - Revisit site types for additional characterization (as needed)
  - Rank site types by level of environmental stresses (hardest environments ranked higher / easier environments ranked lower)
- LSIC Spring Meeting is May 11-12, 2021
  - Preliminary report to LSIC community

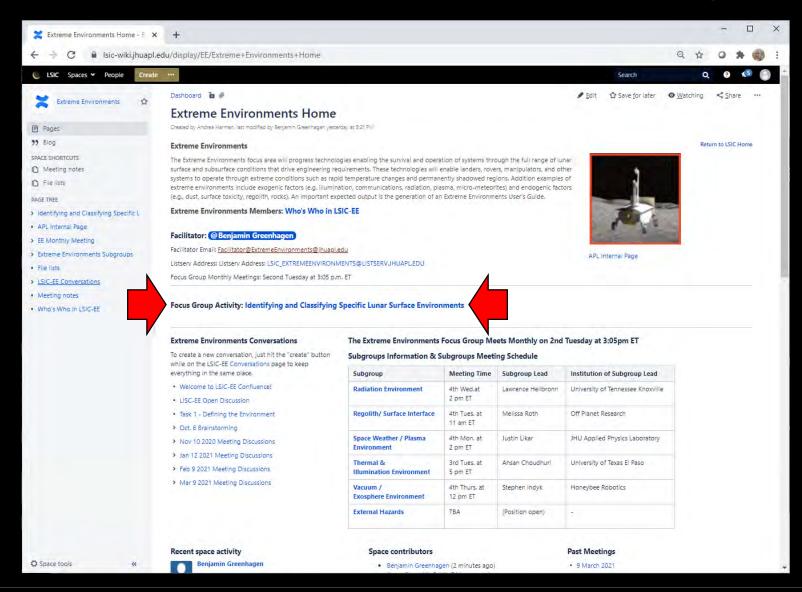




Activities to Complete Before the LSIC Spring Meeting






#### What Kinds of Environments or Types of Sites?

 Any lunar surface environment that represents a challenge or requires a technical mitigation to allow surface survival and operations

| Polar Specific Environments                          | Environmental Variations                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Permanently<br>Shadowed Regions<br>(PSRs)            | <ul> <li>PSRs with significant reflected illumination</li> <li>PSRs without significant reflected illumination</li> <li>PSRs with hydrogenated regolith</li> <li>PSRs without hydrogenated regolith</li> </ul>                                                                                                                 |
| Areas of High<br>Illumination<br>(>55% Illumination) | <ul><li>Naturally high illumination</li><li>Mobility-enabled high illumination</li></ul>                                                                                                                                                                                                                                       |
| Mixed Polar<br>Environments                          | <ul> <li>Illuminated terrain with rover-accessible macro cold traps (10s to 100s+ meter PSRs)</li> <li>Illuminated terrain with rover-accessible micro cold traps (1 - 10 meter PSRs)</li> <li>Occasionally illuminated terrain with subsurface volatile stability</li> <li>Polar lava tubes or pits (hypothetical)</li> </ul> |

| Non-Polar<br>Environments    | Environmental Variations                                                                                                                          |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Apollo-style<br>Environments | <ul><li>Maria</li><li>Highlands</li></ul>                                                                                                         |
| Topographic<br>Margins       | <ul><li>Crater features (rims, peaks, floor fractures)</li><li>Volcanic features (vents, domes, riles)</li></ul>                                  |
| Lunar Pits &<br>Lava Tubes   | <ul><li>Mare basalt features</li><li>Impact melt features</li></ul>                                                                               |
| Surface Anomalies            | <ul> <li>Irregular Mare Patches</li> <li>Regolith Texture Anomalies (High/Low Dust,<br/>Pyroclastic, etc.)</li> <li>Magnetic Anomalies</li> </ul> |





https://lsic-wiki.jhuapl.edu/display/EE





#### What to Expect at the Supersized 2-hour April 13th Focus Group Meeting

- 2:30 Introduction, Scope, and Products (Ben 5 min)
- 2:35 Review of Environment Drivers (Subgroup Leads or Alternate 5 min lightning talks)
- 3:00 Transition to Breakout Zooms (5 min)
- 3:05 Breakout Sessions (55 min)
  - Polar Specific Environments (Moderated by Ben)
  - Non-Polar Specific Environments (Moderated by Karen)
- 4:00 Transition to Plenary Zoom (5 min)
- 4:05 Brief Recaps / Burning Questions (Ben and Karen 5 min each)
- 4:15 Next Steps and Discussion (Ben 15 min)

Product #1: Preliminary environmental assessments for each type, archived on Confluence

Product #2: "Final" list of environments ranked by subgroups according to difficulty

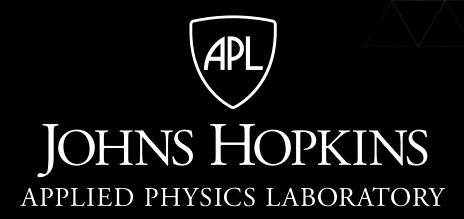
Thoughts? Discussion?



# **Looking Ahead to 2021-22 Cycles**

#### Activities to Complete After the LSIC Spring Meeting (Summer 2021 through Spring 2022)

- Prioritize Specific Lunar Environments to Focus on During LSIC Year 2
  - Likely a mixture of NASA priorities and community identified stressing environments
- For a Few Prioritized Types of Sites:
  - Identify Observation (Knowledge) and Simulation (Prediction) Capabilities and Gaps for Specific Lunar Environments
  - Identify Technology Capabilities and Gaps for Specific Lunar Environments
    - Seek to coordinate this with release of NASA Strategic Technology Plans (STPs)
  - Identify Experimental Testing and Technology Maturation (including Facilities) Capabilities and Gaps for Specific Lunar Environments
- Format Could Be Based on Types of Sites OR Types of Capabilities and Gaps
  - Workshop or working meetings are possible


Questions?



# Today's Agenda

- LSIC & FG Updates (15 min Greenhagen, Stockstill-Cahill, Somervill)
- LSIC-EE Winter/Spring Meeting Cycle (30 min Greenhagen)
  - Schedule / Plan
  - List of Lunar Specific Surface Environments
- Open floor (time permitting)

Next month: April Meeting is scheduled for Tuesday 4/13/21 at 2:30pm EST (2-hour length)

